# Lin William Cong<sup>1</sup> Guanhao Feng<sup>2</sup> Jingyu He<sup>2</sup> Xin He<sup>3</sup>

<sup>1</sup>Cornell University SC Johnson College of Business and NBER

<sup>2</sup>City University of Hong Kong

<sup>3</sup>Hunan University



#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - ▶ e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - 🕨 e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).



#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - 🕨 e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).



#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.

🟲 e.g., Trees, Rossi (2018).

- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

6. Multi-sequence panel data.

#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.

► e.g., Trees, Rossi (2018).

- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

6. Multi-sequence panel data.

#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.

► e.g., Trees, Rossi (2018).

- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

6. Multi-sequence panel data.



#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

6. Multi-sequence panel data.

#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

6. Multi-sequence panel data.

#### Financial Big Data

Distinguishing features and ML solutions

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - ▶ e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.

Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).

- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).

#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - ▶ e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).



#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - ▶ e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).

#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - ▶ e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).



#### Financial Big Data

- 1. High dimensionality (e.g., Cochrane, 2011).
  - Dimension reduction (e.g., Han et al., 2019; Kozak, Nagel, & Santoch, 2019; Feng, Giglio, & Xiu, 2020).
- 2. Nonlinearity (e.g., Harvey, Liu, & Zhu, 2015; Gu, Kelly, & Xiu, 2019).
  - e.g., splines, Freyberger, Neuhierl, & Weber (2019).
  - Deep NNs (e.g., Feng, Polson, & Xu, 2019; Fan et al., 2021).
- 3. Interaction versus sparsity.
  - ▶ e.g., Trees, Rossi (2018).
- 4. Low signal-to-noise (e.g., Martin & Nagel, 2019).
- 5. Non-stationarity/heteroskedasticity.
  - Memory and attention, e.g., Cong et al. (2021); Chen, Pelger, & Zhu. (2021).
- 6. Multi-sequence panel data.
  - e.g., CAAN, Cong et al. (2019).

# Building ML and AI Models for Finance

#### 1. Economic motivation for ML/AI models.

- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;....
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - ► For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - ► For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - ► For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - ► Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ▶ ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



- 1. Economic motivation for ML/AI models.
- 2. Interpretability and transparency.
  - For new theories and models.
  - Applicability and guarding against overfitting.
  - ► For policymakers, regulators, and practitioners.
  - Causality: e.g., Athey & Wager (2019); causal BERT;...
  - Explainable AI, Distillation, etc.
  - Asset pricing and investments
    - Prediction exercises with no economic guidance or inference.
    - Economically motivated supervised learning.
  - Corporate Finance applications
    - ► Textual analysis: Hoberg and Phillips (2016); Li et al (2020); ....
    - ▶ ML in Corporate finance: Erel et al. (2021); Lyonnet and Stern (2022).



# AI Beyond Basic ML: Goal-Oriented Search

- 1. Automation of repeated physical solutions/processes:
  - ▶ Industrial revolution (1750-1850) and Machine Age (1870-1940).
- 2. Automation of repeated mental/computational solutions/processes:
  - Digital revolution (1950-now) and Information Age.
- 3. Let machines find solutions themselves.
  - Artificial Intelligence.
  - Instead of training through examples (supervised learning), we want to specify a problem and/or goal.
  - Requires learning autonomously how to make decisions to achieve goals: essentially a search problem.



# AI Beyond Basic ML: Goal-Oriented Search

- 1. Automation of repeated physical solutions/processes:
  - ► Industrial revolution (1750-1850) and Machine Age (1870-1940).
- 2. Automation of repeated mental/computational solutions/processes:
  - Digital revolution (1950-now) and Information Age.
- 3. Let machines find solutions themselves.
  - Artificial Intelligence.
- Instead of training through examples (supervised learning), we want to specify a problem and/or goal.
- Requires learning autonomously how to make decisions to achieve goals: essentially a search problem.
- Heuristic search (Deep RL and PSA for portfolio management).
- **Greedy search** (panel trees for latent factor asset pricing and uncommon factors for Bayesian asset clusters..



# (Deep) Reinforcement Learning as Heuristic Search

The Reward Hypothesis: Any goal can be formalized as the outcome of maximizing a cumulative reward.

People learn by **interacting with the environment** in an active and sequential way, to optimize some **rewards**.

- 1. Fly a helicopter
  - Reward: air time, inverse distance, …
- 2. Make a robot walk
  - Reward: distance, speed, ...
- 3. Play games
  - Reward: win, maximize scores, ...
- 4. Manage portfolio
  - Reward: returns, Sharpe ratio, ...
  - Reward, Value, Policy (Actions).
  - Agents: Value-based, Policy-based, Actor Critic, etc.



# A Deep RL and XAI Example

#### "AlphaPortfolio: Direct Construction Through Deep Reinforcement Learning and Interpretable Al" Cong, Tang, Wang, & Zhang (2019).

- Why deep reinforcement learning (RL)?
  - ► Alternative, data-driven, flexible approach for direct optimization.
    - RL: trial-and-error search and delayed rewards (Sutton & Barto, 2017); works well for unlabeled data.
    - Possible interaction with state variables and environments.
    - Offline RL is the most active in AI/CS over the past 5-10 years.
  - Al tailored to portfolio management with superb performance and robustness to economic restrictions.



# A Deep RL and XAI Example

#### "AlphaPortfolio: Direct Construction Through Deep Reinforcement Learning and Interpretable AI" Cong, Tang, Wang, & Zhang (2019).

- Why deep reinforcement learning (RL)?
  - ► Alternative, data-driven, flexible approach for direct optimization.
    - RL: trial-and-error search and delayed rewards (Sutton & Barto, 2017); works well for unlabeled data.
    - Possible interaction with state variables and environments.
    - Offline RL is the most active in AI/CS over the past 5-10 years.
  - Al tailored to portfolio management with superb performance and robustness to economic restrictions.
- Economic distillation for interpretable AI:
  - Big data and black-box models: feature selection or performance diagnostics.
  - Explanable AI (XAI): feature importance extraction vs surrogates; instance-based, compression/distillation, etc.
  - Polynomial sensitivity and textual factor analyses: Drivers for portfolio performance and construction choices.
  - Interpretable and extendable tools: projections onto linear modeling and textual spaces

#### Architecture of AlphaPortfolio

Sequence Representation Extraction Modules:

- ▶ Sequence learning in AP (Cong et al., 2020): RNN  $\rightarrow$  LSTM  $\rightarrow$  Bi-LSTM  $\rightarrow$  RNN with Attention  $\rightarrow$  Transformer (TE) or Bi-LSTM-HA.
- History states in look-back window:  $\mathbf{X}^{(i)} = \{\mathbf{x}_1^{(i)}, \ldots, \mathbf{x}_K^{(i)}\}.$
- Cross-Asset Attention Network (CAAN)
  - Built on self-attention mechanism (Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, & Polosukhin, 2017).



# AlphaPortfolio Performance on Test Sample

|                 | AP Performance |            |            |                | AP Excess Alpha |                |              |                |              |                |
|-----------------|----------------|------------|------------|----------------|-----------------|----------------|--------------|----------------|--------------|----------------|
|                 | (1)            | (2)        | (3)        |                | (4)             | (5)            | (6)          | (7)            | (8)          | (9)            |
| Firms           | All            | $> q_{10}$ | $> q_{20}$ | Factor         | All             |                | $> q_{10}$   |                | $> q_{20}$   |                |
|                 |                |            |            | Models         | lpha(%)         | $\mathbb{R}^2$ | lpha(%)      | $\mathbb{R}^2$ | lpha(%)      | $\mathbb{R}^2$ |
| Return (%)      | 17.00          | 17.10      | 18.10      | CAPM           | $13.9^{***}$    | 0.005          | 12.2***      | 0.088          | $14.0^{***}$ | 0.102          |
| Std.Dev. $(\%)$ | 8.50           | 7.70       | 8.20       | FFC            | $14.2^{***}$    | 0.052          | $13.4^{***}$ | 0.381          | $14.7^{***}$ | 0.465          |
| Sharpe          | 2.00           | 2.31       | 2.21       | FFC+PS         | $13.7^{***}$    | 0.054          | $12.3^{***}$ | 0.392          | $13.3^{***}$ | 0.480          |
| Skewness        | 1.42           | 1.74       | 1.91       | $\mathbf{FF5}$ | $15.3^{***}$    | 0.12           | $13.8^{***}$ | 0.426          | $14.7^{***}$ | 0.435          |
| Kurtosis        | 6.33           | 5.70       | 5.97       | $\mathbf{FF6}$ | $15.6^{***}$    | 0.128          | $14.5^{***}$ | 0.459          | $15.8^{***}$ | 0.516          |
| Turnover        | 0.26           | 0.24       | 0.26       | SY             | $17.4^{***}$    | 0.037          | $15.8^{***}$ | 0.332          | $17.0^{***}$ | 0.394          |
| MDD             | 0.08           | 0.02       | 0.02       | $\mathbf{Q4}$  | $16.0^{***}$    | 0.121          | $15.0^{***}$ | 0.495          | $16.2^{***}$ | 0.521          |

Robust to adding economic restrictions and using alternative objectives. Projection onto linear modeling and natural language spaces.



# Panel Tree as Goal-Oriented Greedy Search



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.


## Asset Pricing with P-Tree Under Global Split Criteria

- Common factors are used to describe returns and average returns.
- Market Factor, Fama-French-Type Factors, time-varying loadings.
- Machine Learning Methods:
  - Penalized regressions, PCAs, or Deep Learning to generate the stochastic discount factor using multiple firm characteristics.
- Panel Trees with an Application for Asset Pricing:
  - Interpretable (e.g., single decision tree) ML method that suits financial big data.
  - Generate test portfolios that better span the efficient frontier.
  - Guided by economic principles and designed for panel settings (e.g., can accommodate regime-shifts) and factor models for individual AP.



# Motivation: Conditional Stochastic Discount Factor Model

• Explain cross-sectional difference for individual stock returns

$$E_t[m_{t+1}r_{i,t+1}] = 0 \iff E_t[r_{i,t+1}] = \underbrace{\frac{\mathsf{Cov}_t(m_{t+1}, r_{i,t+1})}{\mathsf{Var}_t(m_{t+1})}}_{\beta_{i,t}} \underbrace{\left(-\frac{\mathsf{Var}_t(m_{t+1})}{E_t[m_{t+1}]}\right)}_{\lambda_t}$$

• A tradable SDF:

$$m_{t+1} = 1 - w_t^{\mathsf{T}} r_{t+1} = \sum_i f(z_{i,t}) R_{i,t+1}, \quad w_t = E_t \left[ r_{t+1} r_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ r_{t+1} \right]$$

Hard to estimate for high dimensional individual stocks.

• Researchers use basis portfolio (FF 25, industry, etc) instead

 $m_{t+1} = 1 - W_t R_{t+1}, \quad W_t = E_t \left[ R_{t+1} R_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ R_{t+1} \right], \quad R_{t+1,j} = \sum_i f_j(z_{i,t}) R_{i,t+1}.$ 



## Motivation: Conditional Stochastic Discount Factor Model

• Explain cross-sectional difference for individual stock returns

$$E_t[m_{t+1}r_{i,t+1}] = 0 \iff E_t[r_{i,t+1}] = \underbrace{\frac{\mathsf{Cov}_t(m_{t+1}, r_{i,t+1})}{\mathsf{Var}_t(m_{t+1})}}_{\beta_{i,t}} \underbrace{\left(-\frac{\mathsf{Var}_t(m_{t+1})}{E_t[m_{t+1}]}\right)}_{\lambda_t}$$

• A tradable SDF:

 $m_{t+1} = 1 - w_t^{\mathsf{T}} r_{t+1} = \sum_i f(z_{i,t}) R_{i,t+1}, \quad w_t = E_t \left[ r_{t+1} r_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ r_{t+1} \right]$ 

Hard to estimate for high dimensional individual stocks.

• Researchers use basis portfolio (FF 25, industry, etc) instead

 $m_{t+1} = 1 - W_t R_{t+1}, \quad W_t = E_t \left[ R_{t+1} R_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ R_{t+1} \right], \quad R_{t+1,j} = \Sigma_i f_j(z_{i,t}) R_{i,t+1}.$ 



## Motivation: Conditional Stochastic Discount Factor Model

• Explain cross-sectional difference for individual stock returns

$$E_t[m_{t+1}r_{i,t+1}] = 0 \iff E_t[r_{i,t+1}] = \underbrace{\frac{\mathsf{Cov}_t(m_{t+1}, r_{i,t+1})}{\mathsf{Var}_t(m_{t+1})}}_{\beta_{i,t}} \underbrace{\left(-\frac{\mathsf{Var}_t(m_{t+1})}{E_t[m_{t+1}]}\right)}_{\lambda_t}$$

• A tradable SDF:

$$m_{t+1} = 1 - w_t^{\mathsf{T}} r_{t+1} = \Sigma_i f(z_{i,t}) R_{i,t+1}, \quad w_t = E_t \left[ r_{t+1} r_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ r_{t+1} \right]$$

Hard to estimate for high dimensional individual stocks.

• Researchers use basis portfolio (FF 25, industry, etc) instead

 $m_{t+1} = 1 - W_t R_{t+1}, \quad W_t = E_t \left[ R_{t+1} R_{t+1}^{\mathsf{T}} \right]^{-1} E_t \left[ R_{t+1} \right], \quad R_{t+1,j} = \sum_i f_j(z_{i,t}) R_{i,t+1}.$ 



## Conditional SDF and Factor Construction from Basis Portfolios

• Time-varying factor loadings and reduced-form estimation using asset characteristics:

$$\beta_{i,t} = \frac{\mathsf{Cov}_t \left( W_t R_{t+1}, r_{i,t+1} \right)}{\mathsf{Var}_t \left( W_t R_{t+1} \right)} = b_0 + b_1^{\mathsf{T}} z_{i,t},$$

- FF construct factors by dividing stock universe into six non-overlapped groups.
- SMB and HML are (long-short) portfolios on these six portfolios.

$$SMB = \frac{1}{3}(SV + SM + SG) - \frac{1}{3}(BV + BN + BG)$$
$$HML = \frac{1}{2}(SV + BV) - \frac{1}{2}(SG + BG)$$

• Assets in the same group behave similarly given similar risk exposures.

# Why decision tree?

- Advantage 1: Generalized conditional sorts **greedy** search instead of costly enumeration of all possible basis portfolios.
- Advantage 2: Interpretable ML learns nonlinear interactions and higher order effects of high-dimensional variables.
- Advantage 3: Adaptive to the **low signal-to-noise** environment through data value averaging, ensembles, and error minimization as criterion.
- Advantage 4: Asymptotic normality, unbiasedness, and consistency (Scornet, Biau, & Vert, 2015; Wager, 2016; Athey and Wager, 2018).
- Disadvantages of CART (Breiman et al., 1984) and variants:
  - Constant pricing kernel, assume returns are *i.i.d.*; no time-series splits.
  - ► Recursion, each leaf splits locally, without any economic consideration.
  - Ensembles not so interpretable; single tree overfits.
- **P-Tree**: More interpretable and flexible class of tree models tailored for AP applications, generating both leaf test portfolios and SDF in a top-down approah.



P-Tree Factor Model

Empirical Findings

Cornell University

# Traditional Regression Trees: Intuition

Hierarchical: use less and less data  $\rightarrow$  overfit.





## CART: search for optimal split points



- Consider a tentative split point for capturing the cross-sectional variation; similar to sorting.
- Similar to sorting!
- Loop over all possible split points (all variables, all values)

## CART: search for optimal split points



- Pick one to optimize the split criterion.
- CART split criterion minimizes *L*<sup>2</sup> loss or **pricing errors** using a constant pricing kernel:

$$\sum_{i \in \mathsf{left}} (\mathit{r}_{i,t} - \overline{\mathit{r}}_{\mathsf{left}})^2 + \sum_{i \in \mathsf{right}} (\mathit{r}_{i,t} - \overline{\mathit{r}}_{\mathsf{right}})^2$$

# CART grows recursively



- CART assumes observations are *i.i.d.*, which is generally not true for asset return panel data.
- CART grows a tree recursively using local split criterion.
- Easy coding, fast computing, but not crucial or desirable for asset pricing.

# Panel Tree (P-Tree) for Asset Pricing

- We use P-Tree to generate factor and use factor to grow P-Tree.
- The squared sum of **pricing errors** is the split criterion.

$$\sum_{t} \sum_{i} (\mathbf{r}_{i,t} - \mu_{i,t}^{(k)})^2$$
$$\mu_{i,t}^{(k)} = \beta_i \mathbf{f}_t^{(k)}$$

- $f_t^{(k)}$  is the factor generated after the *k*-th split. It is defined using all leaf portfolios.
- The tree has to have a **vectorized outcome** indicating returns of different time periods. But the tree structure models all time periods.
- The split criterion is global, thus the tree has to grow iteratively; nevertheless, the greedy search avoids NP hard problems.



# Panel Tree Factor Model



# Panel Tree Factor Model: Step I

## Consider a split point candidate



- Before splitting,  $R_t^{(0)}$  denote the vector of market returns (value weighted portfolio) at the root node.
- $R_{j,t}^{(k)}$  is the leaf-basis portfolio of the *j*-th terminal node after the *k*-th split.
- The time series for leaf-basis portfolios can be value / equally weighted the panel data structure for returns.



# Panel Tree Factor Model: Step II



• Estimate the SDF  $f_t^{(1)}$  based on leaf basis portfolios, a mean-variance efficient portfolio for  $R_t^{(1)} = [R_{1,t}^{(1)}, R_{2,t}^{(1)}]$ .

$$f_t^{(1)} = \widehat{\Sigma}_1^{-1} \widehat{\mu}_1 R_t^{(1)} = w_{11} R_{1,t}^{(1)} + w_{12} R_{2,t}^{(1)}.$$

 Each split point candidate partitions the cross section of individual stocks, providing different leaf basis portfolios and the resulting SDF.



# Panel Tree Factor Model: Step III

• The split criterion is the "pricing errors" from a conditional factor model. It also follows the no-arbitrage condition for the asset pricing goal.

$$\mathsf{E} = \sum_{t=1}^{T} \sum_{i=1}^{N_t} \left( \mathsf{r}_{i,t} - \beta(\mathsf{z}_{i,t-1}) \mathsf{f}_t \right)^2,$$

- $\beta(z_{i,t-1}) = b_0 + b^{\mathsf{T}} z_{i,t-1}$  are conditional factor loadings.
- The above yield the following regression:

$$\mathbf{r}_{i,t} = \mathbf{b}_0 \mathbf{f}_t + \mathbf{b}^{\mathsf{T}} \mathbf{Z}_{i,t-1} \mathbf{f}_t + \epsilon_{i,t}$$

- Quadratic loss for the entire cross section is the split criterion.
- Loop over all characteristics and breakpoints for the optimal model.



## Panel Tree Factor Model: Step IV



• The second split gives us three leaf basis portfolios and a updated SDF:

$$f_t^{(2)} = \widehat{\Sigma}_2^{-1} \widehat{\mu}_2 R_t^{(2)} = w_{21} R_{1,t}^{(2)} + w_{22} R_{2,t}^{(2)} + w_{23} R_{3,t}^{(2)},$$

- For the second split, the algorithm searches over all leaf nodes, characteristics, and breakpoints.
- The split criterion is calculated based on the entire cross section, thus P-Tree and its SDF are global.

## Boosted P-Trees for Multi-factor Models

- Generate multiple factors using a boosting design (sum of trees).
- The first factor *f*<sub>1,t</sub> is generated by the standard tree factor model on excess returns {*r*<sub>i,t</sub>}. We save the β̂<sub>1</sub>(*z*<sub>i,t-1</sub>), *f*<sub>1,t</sub> from the previous tree.

$$\mathbf{r}_{i,t} = \beta_1(\mathbf{z}_{i,t-1})\mathbf{f}_{1,t} + \epsilon_{i,t}$$

• To generate the second factor  $f_{2,t}$ , we train the tree factor model on  $\{r_{i,t}\}$  controlling the first factor and first beta.

$$\mathsf{E} = \sum_{t=1}^{T} \sum_{i=1}^{N_t} \left( \mathbf{r}_{i,t} - \hat{\beta}_1(\mathbf{z}_{i,t-1}) \hat{\mathbf{f}}_{1,t} - \beta_2(\mathbf{z}_{i,t-1}) \mathbf{f}_{2,t} \right)^2$$

• Also allows for a benchmark adjusted model (market adjusted).



## Boosted Tree: Market Adjusted Model

- Use the market factor as the first factor *f*<sub>1,*t*</sub>
- Fit the stock returns with  $f_{1,t}$  and find the beta on the first factor
- Fit the stock returns with  $f_{1,t}$ ,  $f_{2,t}$  with the beta on the first factor fixed
- Fit the stock returns with  $f_{1,t}, f_{2,t}, f_{3,t}$  with the beta on the first and second factors fixed
- The process continues...



# Duality between MVE and SDF

- Minimum variance of the SDF equals the maximal square Sharpe ratio of the MVE portfolio (Hansen and Jagannathan, 1991).
- P-Tree can incorporate wither asset pricing objective.
- Asset pricing criterion: SDF to explain the cross-sectional variation of stock returns.

$$\mathcal{L}_{\mathsf{A}} = \sum_{t=1}^{T} \sum_{i=1}^{N_t} \left( \mathbf{r}_{i,t} - \boldsymbol{\beta}_{i,t-1}^{\mathsf{T}} \mathbf{f}_t \right)^2,$$

• Investmestment-guidede criterion: maximize the Sharpe ratio of SDF.

$$\mathcal{L}_{\mathsf{I}} = - \boldsymbol{\mu}_{\mathsf{F}}' \boldsymbol{\Sigma}_{\mathsf{F}}^{-1} \boldsymbol{\mu}_{\mathsf{F}},$$



# **Empirical Findings**



## **U.S. Equities**

- 1981-2020 monthly observation for US equities
- Returns and lag-one-month characteristics
- Standardize the characteristics in the cross-section into Uniform [-1,1]
- 61 characteristics in 6 categories: momentum, value-versus-growth, investment, profitability, intangibles, and frictions
- Periods 1981-2000 and 2001-2020 as training and test samples.



## Asset Pricing Tree Structure



- rvar\_ff3 (idiosyncratic volatility)
- ep (earnings-to-price)

Slide 29 / 54 - Cong, Feng, He, & He (2022) - Asset Pricing with Panel Tree under Global Split Criteria

# Investment-Guided P-Tree Structure

Squared Sharpe Ratio as the Objective Function



- rvar\_ff3 (idiosyncratic volatility)
- abr (abnormal return around ernings anouncement)
- rd\_sales (R&D expense to sales)
- sue (standard unexpected earnings)



## Variable Importance via Random P-Forest

- Study importance of variables using bagging (random forest) strategy.
- Fit a tree to bootstrapped return data (randomly draw 20 characteristics out of 61) repeat 1000 times independently.
- Any characteristic is considered about 330 times out of 1,000 subsamples for fitting the P-Forest.
- Two measurements of variable importance

Selection Probability(K) =  $\frac{\#(\text{Selected at first K splits})}{\#(\text{Randomly drawn})}$ 

Char. Importance =  $E(\text{loss function}|\text{with char}_i) - E(\text{loss function}|\text{without char}_i)$ 



Empirical Findings

Summary

Uncommon Factors

#### Variable Importance: Top Splits Random Forest

|      | 1          | 2         | 3         | 4           | 5          |
|------|------------|-----------|-----------|-------------|------------|
| Top1 | RVAR_FF3   | RVAR₋CAPM | ME        | SVAR        | CFP        |
|      | 0.40       | 0.40      | 0.39      | 0.32        | 0.25       |
| Top2 | ME<br>0.45 | RVAR_FF3  | RVAR_CAPM | CFP<br>0.35 | EP<br>0.33 |
| Тор3 | ME         | RVAR_FF3  | RVAR_CAPM | CFP         | EP         |
|      | 0.45       | 0.41      | 0.41      | 0.37        | 0.36       |



P-Tree Factor Model

Empirical Findings

Cornell University

# Measure of Asset Pricing Performance

• Pricing the individual stocks

Total 
$$R^{2} = 1 - \frac{\sum_{i,t}^{NT} (r_{i,t} - \hat{r}_{i,t})^{2}}{\sum_{i,t}^{NT} r_{i,t}^{2}},$$

where  $\hat{r}_{i,t} = \beta(z_{i,t-1})f_t$ 

Stock CS 
$$R^2 = 1 - \frac{\frac{1}{N}\sum_{i=1}^{N} \left(\frac{1}{T}\sum_{t=1}^{T} (\mathbf{r}_{i,t} - \widehat{\mathbf{r}}_{i,t})\right)^2}{\frac{1}{N}\sum_{i=1}^{N} \left(\frac{1}{T}\sum_{t=1}^{T} \mathbf{r}_{i,t}\right)^2},$$

• Standard asset pricing test for portfolios (FF25, Ind49)

Portfolio CS 
$$R^2 = 1 - rac{\sum_{i=1}^{N} \left( \overline{r}_i - \widehat{\overline{r}}_i \right)^2}{\sum_{i=1}^{N} \overline{r}_i^2},$$

Slide 33 / 54 - Cong, Feng, He, & He (2022) - Asset Pricing with Panel Tree under Global Split Criteria

## Asset Pricing Performance

|                   | Individual Stocks |              |              |               |      | Portfolios   |               |              |              |  |  |
|-------------------|-------------------|--------------|--------------|---------------|------|--------------|---------------|--------------|--------------|--|--|
|                   | In-Sample         |              | Out-of-      | Out-of-Sample |      |              | Entire Sample |              |              |  |  |
|                   | lot               | CS           | lot          | CS            |      | FF25         | Ind49         | Leat20       | Leat40       |  |  |
|                   |                   |              | Pan          | el A: P-Tr    | ee   |              |               |              |              |  |  |
| PTree2<br>PTree5* | 11.1<br>13.0      | 25.5<br>22.7 | 11.1<br>13.7 | 10.4<br>16.5  |      | 77.8<br>77.9 | 92.9<br>63.2  | 85.4<br>50.8 | 66.1<br>67.3 |  |  |
|                   |                   | Pa           | nel B: Othe  | r Benchr      | nark | Models       | <u>s</u>      |              |              |  |  |
| CAPM              | 7.0               | 1.3          | 8.4          | 0.6           |      | 91.4         | 88.1          | -219.1       | -36.6        |  |  |
| FF3               | 10.5              | 7.5          | 10.7         | 5.1           |      | 94.9         | 85.4          | -204.7       | -30.6        |  |  |
| FF5               | 11.0              | 13.1         | 11.3         | 5.1           |      | 96.1         | 78.5          | -72.7        | 22.7         |  |  |
| Q5                | 10.9              | 18.1         | 11.5         | 6.4           |      | 96.1         | 88.7          | 32.5         | 62.6         |  |  |
| RP-PCA5           | 12.1              | 18.3         | 13.6         | 15.0          |      | 69.7         | 48.6          | -66.5        | 23.2         |  |  |
| IPCA5             | 13.8              | 27.8         | 14.9         | 17.7          |      | 90.4         | 57.3          | 31.4         | 63.0         |  |  |

• P-Tree factors are strong at explaining stock returns.

- P-Tree gives 20 test portfolios; difficult to price by other models.
- Squared sharpe ratio to select no. of factors (Barillas and Shaken, 2017),

#### Investment Performance: Tradable, High Sharpe and Alpha

|                                 | In-Sample (1981-2000) |       |         |             |           |             |        | Out-of-Sample (2001-2020) |         |      |             |         |  |
|---------------------------------|-----------------------|-------|---------|-------------|-----------|-------------|--------|---------------------------|---------|------|-------------|---------|--|
|                                 |                       | MVE   |         | 1/ <i>N</i> |           |             | MVE    |                           |         |      | 1/ <i>N</i> |         |  |
|                                 | AVG                   | SR    | α       | AVG         | SR        | α           | AVG    | SR                        | α       | AVG  | SR          | α       |  |
|                                 |                       |       |         | Pan         | el A: As  | set Pricing | P-Tree |                           |         |      |             |         |  |
| PTree2                          | 1.75                  | 1.58  | 1.51*** | 1.31        | 1.34      | 0.86***     | 0.30   | 0.31                      | 0.29    | 0.45 | 0.56        | 0.17    |  |
| PTree5*                         | 1.26                  | 3.47  | 1.20*** | 1.06        | 1.69      | 0.72***     | 0.80   | 1.93                      | 0.76*** | 0.70 | 1.14        | 0.42*** |  |
|                                 |                       |       |         | Par         | nel B: Ir | ivestment F | P-Tree |                           |         |      |             |         |  |
| PTree2                          | 1.78                  | 10.41 | 1.76*** | 1.27        | 1.94      | 0.90***     | 1.07   | 2.78                      | 1.10*** | 0.86 | 1.36        | 0.56*** |  |
| PTree5*                         | 1.36                  | 12.55 | 1.35*** | 0.78        | 1.93      | 0.56***     | 0.76   | 2.96                      | 0.78*** | 0.48 | 1.34        | 0.32*** |  |
| Panel D: Other Benchmark Models |                       |       |         |             |           |             |        |                           |         |      |             |         |  |
| FF3                             | 0.53                  | 1.16  | 0.40*** | 0.38        | 0.85      | 0.20***     | 0.22   | 0.30                      | -0.06   | 0.28 | 0.40        | 0.01    |  |
| FF5                             | 0.45                  | 1.48  | 0.38*** | 0.38        | 1.34      | 0.33***     | 0.27   | 0.64                      | 0.13*   | 0.25 | 0.59        | 0.12    |  |
| Q5                              | 0.77                  | 2.78  | 0.74*** | 0.63        | 2.10      | 0.53***     | 0.34   | 1.22                      | 0.34*** | 0.31 | 1.10        | 0.25*** |  |
| IPCA5                           | 1.50                  | 10.37 | 1.48*** | 0.90        | 3.15      | 0.75        | 0.34   | 4.60                      | 0.98*** | 0.50 | 2.14        | 0.61*** |  |
|                                 |                       |       |         | 2.00        | 2.10      |             | 2.07   |                           |         | 5.70 |             |         |  |

• P-Tree factors are tradable, with high Sharpe Ratio and Jensen's Alpha.



# Factor Spanning Alpha Tests

|                                                    |          | In-Sample  | е             | Out-of-Sample |        |                    |  |  |  |  |
|----------------------------------------------------|----------|------------|---------------|---------------|--------|--------------------|--|--|--|--|
|                                                    | FF5      | Q5         | IPCA5         | FF5           | Q5     | IPCA5              |  |  |  |  |
| _                                                  |          |            |               |               |        |                    |  |  |  |  |
| Pane                                               | A: Marke | et-Adjuste | ed P-Tree fac | tors          |        |                    |  |  |  |  |
| RVAR_FF3-EP                                        | 130***   | 101***     | 107**         | 12            | 4      | 31                 |  |  |  |  |
| BM_IA-III                                          | 35**     | 33         | -100***       | 107***        | 110*** | 34                 |  |  |  |  |
| MOM12M-STD_DOLVOL                                  | 82***    | 53***      | -24           | 25            | 22     | -95***             |  |  |  |  |
| ME-RDM                                             | 52***    | 48***      | 109***        | 29***         | 27***  | 13                 |  |  |  |  |
| MVE (4 factors + mkt)                              | 58***    | 45***      | -21           | 36***         | 34***  | -11                |  |  |  |  |
| 1/N (4 factors + mkt)                              | 60***    | 47***      | 49*           | 35***         | 33***  | 1                  |  |  |  |  |
|                                                    |          |            |               |               |        |                    |  |  |  |  |
| Panel B: Market-Adjusted Investment P-Tree factors |          |            |               |               |        |                    |  |  |  |  |
| RVAR_FF3-ABR                                       | 354***   | 341***     | 227***        | 215***        | 201*** | 69***              |  |  |  |  |
| BM₋IA-LGR                                          | 46***    | 58***      | 96***         | 13            | 16     | -20                |  |  |  |  |
| STD_TURN-LEV                                       | 36***    | 32***      | 85***         | -21**         | -19**  | -18                |  |  |  |  |
| CFP-MOM12M                                         | 53***    | 49***      | 90***         | 45**          | 47**   | 5                  |  |  |  |  |
| MVE (4 factors + mkt)                              | 248***   | 241***     | 175***        | 147***        | 139*** | 42**               |  |  |  |  |
| 1/N (4 factors + mkt)                              | 98***    | 96***      | 131***        | 50***         | 49***  | 12                 |  |  |  |  |
|                                                    |          |            |               |               |        |                    |  |  |  |  |
| Panel C: Other Test Assets                         |          |            |               |               |        |                    |  |  |  |  |
| MVE-FF25                                           | 55***    | 42***      | 27*           | 19***         | 15**   | 10                 |  |  |  |  |
| MVE-IND49                                          | 13*      | 20         | -14           | 10            | 8      | 28*                |  |  |  |  |
| 1/N-FF25                                           | -8***    | -8         | 57***         | 3             | 8**    | 5                  |  |  |  |  |
| 1/N-IND49                                          | 63*      | 30         | 62            | -2            | 10     | 4                  |  |  |  |  |
|                                                    |          |            |               |               |        | Cornell University |  |  |  |  |

Slide 36 / 54 - Cong, Feng, He, & He (2022) - Asset Pricing with Panel Tree under Global Split Criteria

# Investing in P-Tree Factors



## **Time-Series Split**

- Asset returns are panel data with two dimensions.
- In addition to cross-section split, we can also include time-series split.
- The asset pricing tree model can be different under different macroeconomic conditions.
- When building the tree, we simply split the time-series before splitting the cross-section.



## Asset Pricing Tree under High/Low Stock Variance



- Adapt to different macroeconomic conditions.
- Empirically, our model finds Stock Variance is the key indicator.
- We have all the empirical results for Time-Series P-Tree in the paper.

## Extensions: Interaction to Strengthen or Resurrect Anomalies

- Fama-French type Factors Long-short Portfolios sorted on one firm characteristic (or bivarate sorted with market equity).
- Characteristics or factor interaction is rarely explored.
- Possible to enhance factor risk premium by considering (asymmetric) interactions.
- Possible to resurrect insignificant factors by considering (asymmetric) interactions.
  - Maximum daily returns (Bali et al., 2021) has has a significant premium in the training sample but disappears in the test sample. Interacting with abnormal returns around earnings announcement (ABR) on the short portion and industry-adjusted size (ME IA) on the long portion earns 67 basis points for monthly average returns and 111 basis points for alpha.



## Corporate Bonds Data

- 2002-2019 monthly observation for US corporate bonds
- Trade Reporting and Compliance Engine (TRACE)
- Transaction-level data
- Returns and lag-one-month characteristics
- Standardize the characteristics in the cross-section into Uniform [-1,1]
- 40 characteristics in 4 categories: interest risk or maturity, beta (risk measures), liquidity, past return



## Panel Tree for Corporate Bonds



- Corporate bond is an important and interesting market, with rich cross-sectional characteristics.
- P-Tree works well in corporate bond.

#### Takeaways

- P-Tree offers an alternative top-down solution to generalized sorting.
- Generated basis portfolios help construct factors for asset pricing, and serving as test assets.
- Using U.S. equity and corporate bond data, P-Tree models outperform standard factor models in pricing and return prediction.
- High-dimensionality, nonlinearity, interactions, low signal-to-noise, time heteroskedasticity, panel data + Interpretable!
- A new class of models that provides a unified framework to
  - ► (i) analyze potentially non-i.i.d., unbalanced panel data, and
  - ► (ii) accommodate global split criteria (guided by economics).

All while preserving trees' interpretability, computational feasibility, and suitability for financial big data.


## Other Applications of the P-Tree Framework

#### "Uncommon Factors and Bayesian Asset Clusters"

(Cong, Feng, He, and Li, 2022).

- Do different assets follow different factor models uncommon factors?
- How to separate assets for different models observation clustering?
- How to choose factors for different clusters of assets variable selection?



### Motivation: Uncommon Factors

- Factor models explain the cross-sectional return dynamics
  - ► Well-known risk factors: Market, Beta, Size, Value, Momentum · · ·
- Long-standing topic to searching for the true or universal (factor) model that is not rejected by asset pricing tests.
  - ► For example, FF 5 factors explain 5 × 5 ME-B/M portfolios, but significant alpha for small-growth (Fama and French, 2015).



## Motivation: Uncommon Factors

- Factor models explain the cross-sectional return dynamics
  - ► Well-known risk factors: Market, Beta, Size, Value, Momentum · · ·
- Long-standing topic to searching for the true or universal (factor) model that is not rejected by asset pricing tests.
  - ► For example, FF 5 factors explain 5 × 5 ME-B/M portfolios, but significant alpha for small-growth (Fama and French, 2015).
- There are a few directions of research
  - ► Missing factors? The literature keeps fishing more.
  - ► Factor zoo? Factor selection and model comparison.
  - ► Time variation? Unconditional v.s. Conditional model.
  - Choices of test assets? Unstable factor loadings, or weak factors?
  - Some assets may be just mispriced.
- Take a step back; maybe no one-size-fits-all empirically.



## Motivating Uncommon Models and Observation Clustering

• Standard factor modeling for the holy grail of empirical asset pricing:

$$r_{1,t} = \alpha_{1,t} + \beta_{1,1,t} f_{1,t} + \dots + \beta_{1,k,t} f_{k,t} + \epsilon_{1,t}$$

$$\mathbf{r}_{n,t} = \alpha_{n,t} + \beta_{n,1,t}\mathbf{f}_{1,t} + \dots + \beta_{n,k,t}\mathbf{f}_{k,t} + \epsilon_{n,t}$$

- ► LHS observations/assets are heterogeneous; grouped heterogeneity.
- Burden all on RHS model estimation and selection.
- Sorting/test asset construction for common models & cross-cluster spread.
- A novel approach for *jointly* considering observation clustering and heterogeneous model selection:
  - Model selection on RHS: homogeneous observations following one common factor model.
  - Observation clustering on LHS: split the cross-section such that each cluster has a model with potentially uncommon factors.
  - Data-driven yet incorporating economic principles/finance theory and preserving interpretability.



## Clustering in Finance

- Pre-specified clustering in asset pricing
  - ► Industry classification (Fama and French, 1997).
  - International finance: sorted portfolios (Karolyi and Stulz, 2003; Hou et al, 2011) and individual assets (Chaieb et al, 2021).
- Characteristics-based Clustering
  - Security sorting on characteristics clusters individual stocks (to form sorted portfolios) for similar risk exposures (Berk 2000).
  - Panel tree for splitting the cross section (Cong et al., 2022)
- The correct cluster is unknown (no observed labels).
  - Supervised clustering based on factor model fitness (Patton and Weller, 2019; Cong et al., 2022).
  - Unsupervised clustering using return correlation (Ahn et al., 2009).



#### **Risk Factor Selection**

- Current factor/characteristic selection studies focus on aggregate signals
  - Factor Selection in Time-Series Regression (betas) (Hwang and Rubesam, 2020; Avramov et al., 2022).
  - Factor Selection in Cross-Sectional Regression or SDF model (risk price) (Kozak et al., 2020; Feng et al., 2020; Bryzgalova et al., 2022).
  - Characteristics selection for Future Return Predictability (Freyberger et al., 2020; Gu et al., 2020).
- Weak factors (Kkan and Zhang, 1999; Giglio, Xiu, and Zhang, 2022).
  - factors to which the test assets have little or no exposure
  - standard estimation and inference incorrect
- Uncommon factors an alternative to overcome empirical challenges.



### Bayesian Methods in Finance

- Why use Bayesian methods?
  - ► Parameter uncertainty (Kandel and Stambaugh, 1996; Barberis, 2000).
  - Model uncertainty
    - Model Averaging (Avramov, 2002; Avramov et al., 2022).
    - Shrinkage Prior (Hwang and Rubesam, 2020; Bryzgalova et al., 2022).
  - Economic Prior Beliefs (Pastor, 2000; Paster and Stambaugh, 2000; Avramov and Chordia, 2006; Avramov and Wermers, 2006).
  - Posterior probabilities for factor usefulness, credible interval for model parameters, and predictive distribution for risk assessment.
- · How to use Bayesian methods to compare factor models?
  - Bayesian marginal likelihood (Barillas and SHanken, 2018; Chib et al, 2020) considers and integrates parameter uncertainty or/and model uncertainty.
- Therefore, marginal likelihood is a natural and interpretable global split and stopping criterion for clustering ——- splitting the cross section.



## Single Leaf Model: A Bayesian Factor Model

For all assets in the same *j*-th leaf,

- *r*<sub>*i*,*t*</sub>: a panel of individual stock returns
- ft: traded risk factors (MktRF, SMB, HML, RMW, CMA, MOM, etc.)
- *z*<sub>*i*,*t*-1</sub>: prespecified firm characteristics

$$\begin{aligned} \mathbf{r}_{i,t} &= \mathbf{A}(i,t-1) + \mathbf{B}(i,t-1)\mathbf{f}_t + \epsilon_{i,t} \\ \mathbf{A}(i,t-1) &= \alpha_j \\ \mathbf{B}(i,t-1) &= \beta_j(i,t-1) \\ \beta_j(\mathbf{z}_{i,t-1}) &= \mathbf{b}_{j,0} + \mathbf{b}_{j,1} (I_K \otimes \mathbf{z}_{i,t-1}) \\ &\epsilon_{i,t} N(\mathbf{0}, \sigma_{i,t}^2), \quad \sigma_{i,t}^2 = \sigma_j^2, \end{aligned}$$

Estimate a pooled model for all assets with idiosyncratic betas and alphas driven by  $z_{i,t-1}$ . Plug dynamic  $\alpha_j(\cdot)$  and  $\beta_j(\cdot)$ :

$$\mathbf{r}_{i,t} = \alpha_j + \mathbf{b}_{j,0}\mathbf{f}_t + \mathbf{b}_{j,1}\left(\mathbf{f}_t \otimes \mathbf{z}_{i,t-1}\right) + \epsilon_{i,t},$$



## Model Estimation and Factor Selection using Spike-and-Slab

- SS as Bayesian variable selection prior for selecting f<sub>t</sub>.
- Skeptical investor ( $w_i = 0.1$ ) versus Agnostic investor ( $w_i = 0.5$ ).
- Bayesian variable/factor selection assuming independent SS priors on  $\mathbf{b}_{j,0}$ :

$$\begin{aligned} \pi(b_{j,0,k} \mid \sigma_j^2, \gamma_j) &= (1 - \gamma_{j,\mathbf{f},k}) N(0, \xi_0^2 \sigma_j^2) + \gamma_{j,\mathbf{f},k} N(0, \xi_1^2 \sigma_j^2); k = 1, \cdots, K, \\ \pi(b_{j,1,k,i} \mid \gamma_j) &= (1 - \gamma_{j,\mathbf{f},k}) N(0, \xi_0^2 \sigma_j^2) + \gamma_{j,\mathbf{f},k} N(0, \xi_1^2 \sigma_j^2); k = 1, \cdots, K; i = 1, \cdots, M, \\ \pi(a_{j,0} \mid \sigma_j^2) &= N(0, \xi^2 \sigma_j^2), \\ \pi(\sigma_j^2) &= \text{inverse-Gamma}(S_0, v_0), \\ \pi(\gamma_j) &= \pi(\gamma_{j,\mathbf{f}}) = \prod_{k=1}^K w_k^{\gamma_{j,\mathbf{f},k}} (1 - w_k)^{(1 - \gamma_{j,\mathbf{f},k})}. \end{aligned}$$

Latent  $\gamma$  denotes the prior on coefficient bing "spike" or "slab.".

$$\gamma_j = (\gamma_{j,1}, \gamma_{j,2}, \cdots, \gamma_{j,K+KM}) = (\underbrace{\gamma_{j,f}}_{K \times 1}, \underbrace{\gamma_{j,f \circ z}}_{KM \times 1}),$$

### From Single Leaf to a Tree: Marginal Likelihood as Global Split Criterion

Split the cross section according to asset characteristics



- "Goodness" of a candidate split: joint marginal likelihood of the models on two child nodes.
- Model parameters can be integrated out a priori:

$$\begin{split} p(\mathcal{A}_0) &:= p(\mathbf{R} \mid \mathbf{Z}, \mathbf{F}) = \int p(\mathbf{R} \mid \mathbf{Z}, \mathbf{F}, \gamma_j, \alpha_j, \mathbf{b}_{j,0}, \mathbf{b}_{j,1}, \sigma_j^2) \\ &\times \pi(\alpha_j \mid \sigma_j^2) \pi(\mathbf{b}_{j,0}, \mathbf{b}_{j,1} \mid \sigma_j^2, \gamma_j) \pi(\sigma_j^2 \mid \gamma_j) \pi(\gamma_j) d\alpha_j d\mathbf{b}_{j,0} d\mathbf{b}_{j,1} d\sigma_j^2 d\gamma_j. \end{split}$$

- Separation of tree growth and mis-specification/estimation.
- Parameter and model uncertainties captured in closed form.

# Splitting the Cross Section into Asset Clusters

- Four major cluster groups driven by SVAR (-0.2), ME (-0.2), SVAR (-0.6).
- Low-vol and size-related anomalies as grouped heterogeneity: low SVAR loads not on IVOL, high SVAR loads not on BAB.
- Robustness in Size-adjusted trees.



Cornell Universit

## Key Findings

- Asset returns exhibit grouped heterogeneity.
- BCM applied to U.S. individual stock returns identifies market, size, and short-term reversal as common factors, and several uncommon factors that lose exposure to some clusters during tree growth.
- Differential factor exposure and potential segmentation manifest primarily through differential stock variance, followed by market equity and earnings-to-price ratio.
- Built on leaf clusters, a tangency portfolio on cluster-selected factor models delivers exceptional in-sample and out-of-sample performance.
- Cluster alphas indicate arbitrage opportunities and can generate an out-of-sample monthly average return of 2.22% using LS hedged alpha portfolios.
- More skeptical prior beliefs lead to less prediction risk and better coverage.